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® Countless applications:
® Images:
® Error correcting codes
® Medical diagnostics

® TJext
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Statistical Models for Prediction

® One approac

® Assume (or

.

earn) a model for p(a:'h’, x’)

® Predict the most likely hidden values

arg max p(x|x?)

xh

#® This conditional distribution often corresponds to a

graphical mode

® Need to know how to find an assighment with
maximum probability




The MAP Problem

® Given a graphical model over x1,..., %,

1
_ 1@

/

#® Find the most likely assignment: arg max f(w)
£
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MAP Approximations

® X is discrete so generally NP hard

® Many approximation approaches:

® Greedy search

C-ﬁ Loopy belief propagation (e.g., max product)

® Linear programming relaxations

® | P approaches
#® Provide optimality certificates

® Optimal in some cases (e.g., submodular functions)

® Can be solved via message passing
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The k-best MAP Problem

® Find the k best assignments for f(X)

® Denote these by a:(l), - ,a:(k)

o Useful in:

#® Finding multiple candidate solutions when the
energy function is not accurate (e.g., protein
design)

® As a first processing stage before applying more
complex methods

® Supervised learning




From 2 to k best

We can show that given a polynomial
algorithm for k=2, the problem can be
solved for any k in O(k)

Focus on k=2

Our key question: what is the LP formulation
of the problem, and its relaxations?




Outline

® | P formulation of the MAP problem
® LP for 2" best

® General (intractable) exact formulation
® Tractable formulation for tree graphs

® Approximations for non-tree graphs

® Experiments
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LP Formulation of MAP

x® = arg max Z 0;i(xi,x;)
£

ij€E

— maXE q(x E 0ii(xi,z;)= maxS S Qij (x5, )0 (x5, 25)

a(x) - a(w)

1] Xi,T;

® QObjective depends only on pairwise marginals
® But only those that correspond to some distributiong(z)

® This set is called the Marginal polytope (Wainwright & Jordan)

See: Cut polytope (Deza, Laurent),
Quadric polytope (Boros)

mgxzﬁij(xi,wj)— max Z,uw (25, 2)0ii (i, 25) = max - 6

pneM(G)

iJ

neM(G)
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The Marginal Polytope

M(G)
e Sj > (@i, 25) 05 (i, ;) Marginal

1)€EE x;,x;

Polytope

» There exists a p(x) s.t. D(T,Tj) = wij(Ti, ;)

» Difficult set to characterize. Easy to outer bounc

® The vertices have integral values and correspond to
assignments on X
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Relaxing the MAP LP

ma?X E Hij(xiaxj < mggc S S 2% ZCZ,CIZJ 7 ijwxj)
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® |f optimum is an integral vertex, MAP is

@ solved
\ _—~ % Possible outer bound: Pairwise consistency

k

?I—C Z“” Tiy Tj) Zugk(%,xk)

Exact for trees

W\ » Efficient message passing schemes for
solving the resulting (dual) LP
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® P for 2" best

® General (intractable) exact formulation
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LP for the 2" best problem

® The 2" best problem corresponds to
the following LP:

max f(a;0) = max - 0
xAx (1) f( ) pEM(G,xD) H

® |s there a simple characterization of M(G,z'")?

® Is it M(G) plus one inequality?

® |f so, what inequality?
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® Tractable formulation for tree graphs
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Adding inequalities to M(G)

Any valid inequality must separate 2
from the other vertices

How about: Z ti(z;) <m—1 (Santos9l)

')
RHS is nfor z andn — 1 or less for
other vertices

But: Results in fractional vertices, even
for trees

Only an outer bound on M(G, z)
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® Define: A(G,z)={p| pe M(G), I(p,z)<0 }

® Want to show that if u € A(G, z) there exists a
p(X) that has these marginals and p(z)=0.

[ min p(z)

B pi(x;) = pi(x;)
p(z) >0

\

® |n fact we can show that for trees:

peM(G) == F(p)=max{0,1(p,z2)}
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min p(z)
S.t.  Dij ($z'7 33]’) = Hij (xiv xj)
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Proof - key ideas

Pz’j(%,ﬂ?g‘) — Hij (Q%xj)
pixi) = pi(2;)

p(z) >0 Vo + z

Dual: max A - p
) S.T. Zij )\ij(miywj) -+ Zz )\z(xz) S 0 Vx 7é <
> ij Nig (i, 25) + D2 A=) =1
® We show that the value of the above is [, z)

® From there it’s easy to conclude that
F(p) = max{0, I(p, 2)}
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® Use max-marginals:

AMz;) =  max A(x)

:%::%i:aci »
MNziz;) = max  A(x)
:%::%i:aci,:%j =T

® Rewrite: \(xz) =) (

(




® Use max-marginals:

AMx;) = max A(x)

:%::f:i:aci w
MNziz;) = max  A(x)
:%::%i:ac,,;,:%j =T

(

® Result follows after some algebra
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polytope by one linear inequality constraint

® The 2" best satisfies I(u, ") = 0 so it cannot
be any assignment (2
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Non tree graphs

Any graph can be converted into a junction tree

We can apply our tree result there

For a junction tree with cliques C and separators
S, the inequality is:

D (1 —ds)us(zs) + Y nolze) <0

SeSs ceC

Specifying the marginal polytope requires a number
of variables exponential in the tree width. Not
practical.
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Adding all spanning trees

» Can we add all spanning tree inequalities efficiently?

® Yes, via a cutting plane approach:
® Start with one inequality

® Solve LP

® |[f solution is fractional, find a violated tree inequality (if
exists) and add it
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Cutting Plane Algorithm

H1 |s there a tree
inequality that pt4
violates!?

® How do we find a violated tree inequality?

® Note: Even all spanning tree inequalities
might not suffice
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Finding a violated spanning tree

® For a given it find m:I@X[T(NaZ)

» |f it’s positive, add the maximizing tree

® How can we maximize over all trees? Note that:

IM(pz) =) {Mij(zi,zj) — pi(zi) — Mj(zjﬂ + Zﬂi(zi)

ijeT |

® Decomposes into edge scores. Maximizing tree can
be found using a maximum-weight-spanning-tree
algorithm (e.g., Wainwright 02)




Experiments

® Alternative algorithms for approximate 2"? best:

® Using approximate marginals from max-product (BMMF;
Yanover and Weiss 04)

® Lawler/Nillson (72,80) - Partition assighments @ = z).

T1 F a:gl) Ty = %

r1 = mgl) To F :Cél)

D |y = 2D | gy = a® ||y £ ™

X1 = Iq Lo = T9 X3 = Iq
® Maximize over each part approximately. Cost O(n)

® Qur algorithm: STRIPES




Attractive Grids

# Ising models with ferromagnetic interaction

#® The local-polytope guaranteed to yield exact first
best (but not equal to the marginal polytope)

® Goal: Find 50 best. Stripes and Nillson find all of
them exactly. Up to 19 spanning trees added

Rank Run Time

(

—
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Protein Side Chain Prediction

» Given protein’s 3D shape (backbone), choose
most probable side chain configuration

Xi  p(x) o e2iser Vi (@)

Side-chains —>

Protein backbone _’_{\rj\ Xi Xj
G=(VE)

X
(MRFs from Yanover, Meltzer, Weiss ‘06) h

® Can be cast as a MAP problem

#® |mportant to obtain multiple possible solutions




Protein Side Chain Prediction

» Stripes found the exact solutions for all problems studied

#® |n some cases, we used a tighter approximation of the
marginal polytope (Sontag et al, UAI 08)

I P

Stripes Nillson BMMF Stripes  Nillson BMMF
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Summary

The 2" best can be posed as a linear program

For trees differs from [t best by one
constraint only

For non-trees, approximation can be devised
by adding inequalities for all spanning trees

Empirically effective




